

Funktions- und Schnittstellenbeschreibung

DE

6.5

6.6

6.4.2

lr	halt	sverzeichnis	
1	Zu di	esem Dokument	5
	1.1	Zweck und Gültigkeit des Dokuments	5
	1.2	Mitgeltende Dokumente	5
	1.3	Kennzeichnungen in dieser Anleitung	5
	1.4	Warnhinweise in dieser Anleitung	6
2	Allge	meine Funktionsweise	7
3	Bedie	en- und Anzeigeelemente	9
	3.1	Bedien- und Anzeigeelemente der Sensorköpfe	9
	3.2	Bedien- und Anzeigeelemente der Controller-Box	10
4	Inbet	riebnahme	11
	4.1	Anschluss der Sensorköpfe	11
		4.1.1 Messwerte auslesen über Modbus RTU	12
	4.2	Anschluss der Controller-Box	14
		4.2.1 Menüführung Controller-Box	14
		4.2.2 Messwert auslesen über EtherCat	17
	4.3	Ausrichthilfe	18
5	Schn	ittstellen	21
	5.1	Modbus RTU	21
		5.1.1 Kommunikationsparameter	23
	5.2	EtherCat	24
6	Betri	ebsfunktionen	25
	6.1	Filter	25
	6.2	Laser ein-/ausschalten	29
	6.3	Messachse konfigurieren	31
	6.4	Schaltpunkte	33
		6.4.1 Hysterese	36

	6.7	6.7 Verhalten bei fehlerhaften Messwerten 44		
7	Diagr	nosefunl	xtionen	48
	7.1	Identifik	ation	48
8	Anhang			
	8.1	Modbus		50
		8.1.1	Discrete Inputs	50
		8.1.2	Coils	50
		8.1.3	Input registers	51
		8.1.4	Holding register	52

8.2	EtherCat			
	8.2.1	Standardobjekte	54	
	8.2.2	Zyklische Ausgangsdaten RxPDO	55	
	8.2.3	Zyklische Eingangsdaten TxPDO	56	
	8.2.4	Azyklische Ausgangsdaten	58	
	8.2.5	Azyklische Eingangsdaten	59	
	8.2.6	Azyklische Parametrieroptionen	61	
	8.2.7	Spezifische Parameter für Controller-Box	66	

Abbildungsverzeichnis

Abb. 1	Sensorköpfe OE60 mit T-Connector	11
Abb. 2	Sensorköpfe OE60 mit Controller-Box OE60C	14
Abb. 3	Ausgabe der Messwerte - hier am Beispiel TwinCat	17
Abb. 4	Filter Moving Median	25
Abb. 5	Filter Moving Average	26
Abb. 6	Messachse, Standardeinstellung	31
Abb. 7	Sensor im Schaltmodus Punktmodus	33
Abb. 8	Sensor im Schaltmodus Fenstermodus	33
Abb. 9	Positive Hysterese	36
Abb. 10	Verhalten des Schaltausgangs bei Punktmodus (positive Hysterese)	36
Abb. 11	Verhalten des Schaltausgangs bei Fenstermodus (positive Hysterese)	37
Abb. 12	Polarität – Active High	38
Abb. 13	Polarität – Active Low	38
Abb. 14	Nullpunkt-Position, Standardeinstellung	40

1 Zu diesem Dokument

1.1 Zweck und Gültigkeit des Dokuments

Dieses Dokument ermöglicht die sichere und effiziente Parametrierung des Sensors über verschiedene Schnittstellen. Das Handbuch beschreibt die Funktionen und soll bei der Installation und Verwendung der Software über deren Schnittstellen helfen.

Die aufgeführten Abbildungen sind Beispiele. Abweichungen liegen jederzeit im Ermessen von Baumer. Das Handbuch ist ein ergänzendes Dokument zur vorhandenen Produktdokumentation.

1.2 Mitgeltende Dokumente

- Als Download unter <u>www.baumer.com</u>:
 - Datenblatt
 - EU-Konformitätserklärung
- Als Produktbeileger:
 - Kurzanleitung
 - Beileger Allgemeine Hinweise (11042373)

1.3 Kennzeichnungen in dieser Anleitung

Auszeichnung	Verwendung	Beispiel
Dialogelement	Kennzeichnet Dialogelemente.	Klicken Sie auf die Schaltfläche <i>OK</i> .
Eigenname	Kennzeichnet Namen von Produk- ten, Dateien, etc.	<i>Internet Explorer</i> wird in keiner Version unterstützt.
Code	Kennzeichnet Eingaben.	Geben Sie folgende IP-Adresse ein: 192.168.0.250

1.4 Warnhinweise in dieser Anleitung

Warnhinweise machen auf mögliche Verletzungen oder Sachschäden aufmerksam. Die Warnhinweise in dieser Anleitung sind mit unterschiedlichen Gefahrenstufen gekennzeichnet:

Symbol	Warnwort	Erklärung
	GEFAHR	Kennzeichnet eine unmittelbare Gefährdung mit hohem Risiko, die Tod oder schwere Körperverletzung zur Folge haben wird, wenn sie nicht vermieden wird.
	WARNUNG	Kennzeichnet eine mögliche Gefährdung mit mittlerem Risiko, die Tod oder (schwere) Körperverletzung zur Folge haben kann, wenn sie nicht vermieden wird.
	VORSICHT	Kennzeichnet eine Gefährdung mit geringem Risiko, die leichte oder mittlere Körperverletzung zur Folge haben könnte, wenn sie nicht vermieden wird.
	HINWEIS	Kennzeichnet eine Warnung vor Sachschäden.
-`ᢕ	INFO	Kennzeichnet praxisbezogene Informationen und Tipps, die einen optimalen Einsatz der Geräte ermöglichen.

2 Allgemeine Funktionsweise

Der Sensor ist ein sogenannter Durchlichtsensor. Er besteht aus einem Sender und einem Empfänger. Der Sender sendet ein paralleles Laserlichtband, etwas kleiner als seine Frontscheibe, aus. Dieses wird vom Empfänger aufgenommen und trifft im Inneren auf ein lichtempfindliches Empfangselement.

Wird ein Objekt zwischen Sender und Empfänger platziert, blockiert dieses einen Teil des Lichtbands und erzeugt auf dem Empfangselement eine Abschattung. Der Übergang zwischen beleuchtetem und abgeschattetem Bereich wird Kante genannt und vom Sensor ausgewertet.

Der Sensor misst die Position einer Kante innerhalb des Messfeldes in paralleler Achse zur Frontscheibe von Empfänger und Sender.

Messfeld

Pos.	Bezeichnung	Beschreibung	
1 Messfeld		Paralleles Laserlichtband, bildet das Messfeld des Sensors. In diesem Bereich muss sich das Messobjekt bzw. die Kan- tenposition befinden, damit der Sensor Messungen aufneh- men kann.	
2 Kantenposition G		Gemessene Kantenposition in x-Richtung, das heisst parallel zur Sensorfront. Messergebnis: Kantenposition in x-Richtung	
3	Messobjekt	Opakes Objekt.	
x	Messrichtung	Die Messrichtung des Sensors verläuft parallel zur Sensor- front.	

`́́́∩`- <mark>∥</mark>

INFO

Die Distanz zwischen Sender und Empfänger ist begrenzt. Die maximale Distanz entnehmen Sie bitte dem Datenblatt des Sensors.

Die Sensorköpfe *OE60* können autark oder in Verbindung mit der Controller-Box *OE60C* betrieben werden. Entsprechend stehen folgende Kanäle zur Ausgabe der Kantenposition und zur Parametrierung der Sensoren zur Verfügung:

	Sensorköpfe <i>OE60</i> autark:	<i>OE60</i> in Verbindung mit der Controller- Box <i>OE60C</i> :
Ausgabe	Direktes Auslesen über die RS485 Schnittstelle mit Modbus RTU	Sensorköpfe über die Controller-Box OE60C mit Display auslesen oder die In- tegration über EtherCat.
Aufbau		

3 Bedien- und Anzeigeelemente

3.1 Bedien- und Anzeigeelemente der Sensorköpfe

Sensorkopf-LED

LED	Farbe	Leuchtet	Blinkt
POWER (1)	Grün	Sensor ist betriebsbe- reit	_
ALARM (2)	Rot	Kein gültiges Signal im Messbereich	Kritische Signalqualität

Bei aktivierter Ausrichthilfe ändert sich die Bedeutung der LEDs (siehe Kapitel *Ausrichthilfe* [> 18]).

3.2 Bedien- und Anzeigeelemente der Controller-Box

LEDs

Bez.	Status	Beschreibung
Link/ Activity	leuchtet <i>GRÜN</i>	Verbindung aktiv Keine Daten werden übertragen.
	blinkt <i>GRÜN</i>	Verbindung aktiv Daten werden übertragen.
	aus	Verbindung inaktiv Keine Daten werden übertragen.
RUN	leuchtet GRÜN	Zustand: OPERATIONAL
	blinkt 2,5 Hz <i>GRÜN</i>	Zustand: PRE-OPERATIONAL
	blinkt einfach <i>GRÜN</i>	Zustand: SAFE-OPERATIONAL
	aus	Zustand: INITIALISATION
Error	leuchtet ROT	Fehler des Anwendungscontrollers
	blinkt 2,5 Hz <i>ROT</i>	Ungültige Konfiguration
	blinkt einfach <i>ROT</i>	Lokaler Fehler: Das Slave-Gerät hat den EtherCAT-Status selbstständig geändert.
	blinkt zweifach <i>ROT</i>	Prozessdaten-Watchdog-Timeout/ EtherCAT-Watchdog-Ti- meout
	aus	Keine Fehler
Sensor 1-4	leuchtet GRÜN	Sensor in Betrieb
	leuchtet ROT	Alarm
	blinkt <i>ROT</i>	Verbindung zu Sensor erwartet, jedoch keine Verbindung er- kannt.
	aus	Kein Sensor verbunden.

4 Inbetriebnahme

4.1 Anschluss der Sensorköpfe

Werden die Sensorköpfe ohne Controller-Box eingesetzt, können sie direkt in ein RS485-Netzwerk integriert werden. Dazu müssen die Sensorköpfe mit dem beigelegten T-Connector verbunden werden.

Ausgehend vom T-Connector kann die Integration in das RS485-Netzwerk vorgenommen werden. Der T-Connector kann an beiden Steckern sowohl mit dem Sender, als auch mit dem Empfänger verbunden werden. Die Ausrichtung ändert sich dadurch nicht.

Abb. 1: Sensorköpfe OE60 mit T-Connector

Die Ausrichtung des Senders und Empfängers zueinander kann mit Hilfe der Funktion **Ausrichthilfe** überprüft werden (siehe Kapitel Ausrichthilfe [> 18]).

4.1.1 Messwerte auslesen über Modbus RTU

Mit dieser Funktion können die Messwerte ausgelesen werden.

Der Sensor unterstützt Modbus RTU über RS485 zum Abrufen von Messwerten und zur Parametrierung.

Bei der Kommunikation über die RS485-Schnittstelle handelt es sich um eine serielle Master-Slave-Kommunikation, weshalb zuerst die seriellen Kommunikationsparameter für alle Teilnehmer bekannt sein müssen.

Beispiel:

Vorgehen:

a) Stellen Sie die Kommunikationsparameter am Master ein: Slave-Adresse: 1 (Werkseinstellung) Datenbits: 8 Anzahl Stoppbits: 2 Bit Parität: None Baudrate (bps): 115200 (Werkseinstellung)

b) Lesen Sie das Input Register aus.
 Function ID: 04 (Read Input Register)
 Adresse 114: Measurement value
 Anzahl Register: 2

Ergebnis:

✓ Sie erhalten den Messwert im Mid-Little Endian Format.

Es werden z. B. folgende Daten (hexadezimal) für den Messwert ausgelesen:

- 114 = 5F90
- 115 = 0000

Der Messwert ist auf 2 Modbus-Register aufgeteilt (Little Endian). Somit liegen die niederwertigen Bits auf der kleineren Adresse, in diesem Fall 114. Die höherwertigen Bits liegen auf der grösseren Adresse, in diesem Fall 115. Der Messwert muss demnach als 00 00 5F 90 ausgewertet werden. Das ergibt einen Messwert von 24464 nm bzw. 0,024464 mm

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel Anhang [▶ 50].

Es bestehen zwei Möglichkeiten den Messwert auszulesen (siehe nachfolgende Tabelle).

- Messwert inklusive Zusatzinformationen über die Adresse 105.
- Nur den Messwert über die Adresse 114.

Modbus Zugriff – Input Register: All measurement values

Read adress 105 - length: 9 registers

Adresse	Access	Number of registers	Data type	Description
105	Read	1	uint_16	Alarm:
				 0 = Low - Measurement OK
				 1 = High - No measurement pos- sible
106-107	Read	2	int_32	Measurement value: Measured ed- ge position in nm
108-109	Read	2	int_32	Contamination indicator: Value ran- ge from 0 to 100.
				 0 = No contamination
				 100 = Strong contamination
110-113	Read	4	int_64	Timestamp: Timestamp of measurement in 10 μs

Modbus Zugriff – Input Register: Measurement value

Read adress 114 - length: 2 registers

Adresse	Access	Number of registers	Data type	Description
114-115	Read	2	int_32	Measurement value: Measured ed- ge position in nm

4.2 Anschluss der Controller-Box

Beim Betrieb der Sensorköpfe mit Controller-Box können die Sensorköpfe über eine M12-Verbindung mit der Controller-Box verbunden werden. Dazu müssen die Sensorköpfe mit dem T-Connector verbunden werden. Ausgehend vom T-Connector kann eine direkte Verbindung zur Controller-Box vorgenommen werden. Sie können den T-Connector an beiden Steckern sowohl mit dem Sender, als auch mit dem Empfänger verbinden. Die Ausrichtung ändert sich dadurch nicht.

Abb. 2: Sensorköpfe OE60 mit Controller-Box OE60C

4.2.1 Menüführung Controller-Box

Die Bedienung des Controlles erfolgt über das Display und die Tasten am Gerät.

Display

- Aktivierung des Displays durch kurzes Drücken einer beliebigen Taste
- Nach 5 Minuten wird das Display automatisch inaktiv
- Nach 7 Minuten wird die Anzeige im Display zur
 ückgesetzt: Die Anzeige springt zur
 ück auf den Startbildschirm

Butttons

Buttons sperren/ entsperren: Beliebigen Button gedrückt halten (> 1 Sekunde)

Taste	Navigation	Werte einstellen
000	Innerhalb der Menüstruktur nach oben	Wert erhöhen
	Innerhalb der Menüstruktur nach unten	Wert verringern
	Untermenü aufrufen	Bestätigen : neuen Wert speichern und Werteinstellungen verlassen

Taste	Navigation	Werte einstellen
	Untermenü verlassen	Zurück : neuen Wert nicht speichern und Werteinstellungen verlassen

Im Startbildschirm wird die Kantenposition eines angeschlossenen Sensors dargestellt. Sind mehrere Sensoren angeschlossen, so kann über die Tasten "Hoch" und "Runter" die Kantenposition aller Sensoren ausgelesen werden.

Die Parametrierung des Sensors kann über das Menü vorgenommen werden. Weitere Informationen zu den Funktionen finden Sie im Kapitel *Betriebsfunktionen* [▶ 25].

Menüstruktur

Kursiv dargestellte Einträge sind nur bei ausgewählten Einstellungen bzw. entsprechend angeschlossenen Sensoren sichtbar.

Einstellungen/Werte ändern

Nachfolgend wird das Vorgehen zum Ändern von Einstellungen/Werten am Beispiel der Funktion **Zero Position** beschrieben.

a.	Navigieren Sie mit den Tasten , , , , , , , , , , , , , , , , , , ,	Zero Position (siehe
	Die aktuelle Einstellung wird angezeigt.	. >ALL Sensors
		Zero Position 0.1 mm
b.		. >ALL Sensors
	Aktivieren Sie mit der Taste O den Bearbeiten-Modus. Vor der aktuellen Einstellung wird das Symbol > angezeigt.	Zero Position >0.1 mm
C.		. >ALL Sensors
	Wählen Sie mit den Tasten OV / OV die gewünschte Einstellung.	Zero Position >0.3 mm
d.	Bestätigen Sie die Auswahl mit der Taste O	->ALL Sensors Zero Position 0.3 mm

Die Einstellung für Zero Position ist auf den neuen Wert geändert.

4.2.2 Messwert auslesen über EtherCat

Der Messwert des entsprechenden Sensors kann über *EtherCat* mit der Funktion *Sensor X Measurement Value* ausgelesen werden.

Name	Online	Тур	Größe	>Adre	Ein/A	User ID
🕫 Sensor 1 Status	1	UDINT	4.0	39.0	Einga	0
🕫 Sensor 1 Measurement Value	2147483646	DINT	4.0	43.0	Einga	0
🕫 Sensor 1 Contamination Indicator	2147483647	UDINT	4.0	47.0	Einga	0
🕫 Sensor 1 Timestamp	817102928	ULINT	8.0	51.0	Einga	0
😕 Sensor 2 Status	1	UDINT	4.0	59.0	Einga	0
😕 Sensor 2 Measurement Value	2147483647	DINT	4.0	63.0	Einga	0
🕫 Sensor 2 Contamination Indicator	2147483647	UDINT	4.0	67.0	Einga	0
🕫 Sensor 2 Timestamp	0	ULINT	8.0	71.0	Einga	0

Abb. 3: Ausgabe der Messwerte - hier am Beispiel TwinCat

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [▶ 50].

EtherCAT-Zugriff: Measurement values

Name	Index	Subindex	Description
Sensor 1 Measurement Value	1A01	02	Measurement value for sensor 1.
Sensor 2 Measurement Value	1A02	02	Measurement value for sensor 2.
Sensor 3 Measurement Value	1A03	02	Measurement value for sensor 3.
Sensor 4 Measurement Value	1A04	02	Measurement value for sensor 4.

4.3 Ausrichthilfe

Bei Unsicherheiten in der Ausrichtung der Sensorköpfe zueinander oder bei Änderungen in der Installation der Sensorköpfe wird empfohlen, die Ausrichtung der Sensorköpfe zu überprüfen.

Die Ausrichtung kann nur überprüft werden, wenn sich kein Objekt innerhalb des Messbereichs befindet.

a) Entfernen Sie alle Objekte im Messbereich.

Die Ausrichthilfe muss zuerst aktiviert werden. Anschliessend kann die Ausrichtung anhand des LED-Verhaltens (Sensor-LED) geprüft/korrigiert werden.

LED-Verhalten			Strahlposition beim Empfänger
Grün	Rot	Ausrichtung	Vorgehen
An	Aus	Ausrichthilfe ist aktiv. Der Sensor ist nach Deaktivierung der Ausrichthilfe für eine zuverlässige Messung bereit.	Strahl trifft auf Empfangsfeld. Keine Änderung notwendig.
An	Blinkt	Die Fehlausrichtung des Sensors kann sich auf das Messergebnis aus- wirken. Der Strahl trifft auf den obe- ren Teil der Frontscheibe des Emp- fängers.	Strahl trifft nicht auf Empfangsfeld Bewegen Sie den Absender in Rich- tung des Kabelausgangs.
Blinkt	An	Die Fehlausrichtung des Sensors kann sich auf das Messergebnis aus- wirken. Der Strahl trifft auf den unte- ren Teil der Frontscheibe des Emp- fängers.	Der Strahl trifft nicht auf das Emp- fangsfeld. Bewegen Sie den Sender entgegen der Richtung des Kabelausgangs nach oben.
Blinkt	Blinkt	Die Fehlausrichtung des Sensors führt zu einem Alarmzustand, da eine Messung nicht möglich ist. Der Sen- der ist gekippt oder hat einen Versatz gegenüber der Empfangsachse.	Kippen Sie den Absender oder korri- gieren Sie den Versatz zwischen den Einbaupositionen.

Tab. 1: LED-Verhalten bei aktivierter Ausrichthilfe

HINWEIS

Eine Fehlausrichtung kann zu Messfehlern führen. Nach der Überprüfung der Ausrichtung muss die Ausrichthilfe deaktiviert werden.

Ist die Ausrichthilfe deaktiviert ist, verhalten sich die Sensor-LEDs wie im Kapitel *Bedien- und Anzeigeelemente der Sensorköpfe* [> 9] beschrieben.

Display Zugriff: Mounting assistant

Voraussetzung:

- ⇒ Sie befinden sich im Startscreen.
- Navigieren Sie mit der Taste ⁰ zum Menüpunkt *Mounting Assist.* des auszurichtenden Sensors.

Ergebnis:

- ✓ Die Ausrichthilfe ist aktiv.
- Die LEDs am entsrechenden Sensor leuchten/blinken (Betriebsanzeige und Alarmanzeige) entsprechend dem Lichtempfangsstatus.

Die Ausrichthilfe wird beendet, sobald das Menü verlassen wird.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [▶ 50].

Modbus Zugriff – Coils: Mounting assistant

Write address 4 - length: 1 registers

Address	Access	Number of registers	Data type	Description
4	Write	1	1 Bit	Mounting assistant:
				The mounting assistant will be di- sabled (when on, a yellow LED indi- cates incorrect alignment), if 0 gets written to this coil.

Modbus Zugriff – Input Register: Status Mounting assistant

Read adress 121 - length: 1 registers

Address	Access	Number of registers	Data type	Description
121	Read	1	int_8	Status Mountain assistant:
				 0 = Inactive
				• 1 = Active
				Unused Byte (uint_8)

Name	Index	Subindex	Description
Mounting Assistant	80X11	10	Activate/deaktivate mounting assistant for sensor 1. FALSE = Deactivate TRUE = Activate
	80X12	10	Activate/deaktivate mounting assistant for sensor 2. FALSE = Deactivate TRUE = Activate
	80X13	10	Activate/deaktivate mounting assistant for sensor 3. FALSE = Deactivate TRUE = Activate
	80X14	10	Activate/deaktivate mounting assistant for sensor 4. FALSE = Deactivate TRUE = Activate

EtherCAT-Zugriff: Mounting Assistant

5 Schnittstellen

In diesem Abschnitt werden die Schnittstellen beschrieben, über die mit dem Sensor kommuniziert werden kann.

5.1 Modbus RTU

Modbus RTU ist ein standardisiertes Protokoll, das in diesem Fall auf einer serielle Master-Slave-Kommunikation über RS485 aufbaut.

Auf die Funktionalität des Sensors kann zugegriffen werden, indem Einträge in den Tabellen *Coils, Discrete Inputs, Input Registers* und *Holding Registers* gelesen bzw. geschrieben werden. Die folgenden Modbus-Funktions-Codes (FC) werden dabei unterstützt:

- Read Coils (FC 01)
- Read Discrete Inputs (FC 02)
- Read Holding Registers (FC 03)
- Read Input Registers (FC 04)
- Write Single Coils (FC 05)
- Write Single Holding Register (FC 06)
- Write Multiple Holding Registers (FC 16)

Folgend finden Sie eine Übersicht der zur Verfügung stehenden Register. Die 2 beschriebenen Tabellen sind unabhängig voneinander, so dass die gleiche Adresse bei den unterschiedlichen Tabellen jeweils eine andere Funktionalität repräsentieren kann. Die Anzahl der mit einem Modbus-Befehl zu lesenden oder zu schreibenden Register muss der bei der jeweiligen Sensor-Funktionalität angegebenen Länge entsprechen. Ein teilweises Lesen oder Schreiben von Parametern ist nicht möglich.

INFO

1 Modbus-Register entspricht 2 Bytes. Wenn der Datentyp eines Sensor-Parameters breiter als ein 2 Byte Modbus-Register ist, wird der Parameter auf mehrere Modbus-Register aufgeteilt. Dabei liegen die niederwertigen Bits auf der kleineren Adresse und die höherwertigen Bits auf der größeren Adresse (Little Endian).

Generell gilt: Alle Register können geschrieben und gelesen werden. Wenn ein Register gelesen wird, das nur für einen Schreibzugriff vorgesehen ist, wird 0xFFFF zurückgegeben.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *An*hang [▶ 50].

Discrete Inputs: FC 02

Adresse	Anzahl Register	Kommando	Beschreibung
0	1	Alarm	Messwert OK/nicht OK

Input register: FC 04

Adresse	Anzahl Register	Kommando	Beschreibung
0	33	Vendor name	Hersteller-Name
40	65	Product infor- mation	Produktinformationen, z. B. Artikelnummer, Be- zeichnung
105	9	All measure- ments	Messwert und Zusatzinformationen (z. B. Ver- schmutzungsanzeige)
114	2	Measurement value	Messwert
116	5	Scaling factors	Skalierungsfaktor für ausgegebenen Messwert
121	1	Status mounting assistant	Status der Ausrichthilfe (aktiv/inaktiv)

Holding register: FC 03/06/16

Adresse	Anzahl Register	Kommando	Beschreibung
2	2	Zero Position	Nullpunkt-Position nummerisch
4	1	Precision filter preset	Signalfilterung auswählen
5	2	Custom precisi- on filter	Für Precision filter preset "Custom": Filterlänge Median und Average Filter
12	4	Invalid value handling	Verhalten des Sensors bei ungültigen Messwerten
1100	1	Modbus slave address	Slave-Adresse
1101	1	Modbus baudra- de ID	Baudrate

Coils: FC 01/05

Adresse	Kommando	Beschreibung
0	Teach zero position	Nullpunkt-Position teachen
1	Laser OFF	Laser ON/OFF
2	Axis inversion	Invertieren der Messachse
3	Factory reset	Zurücksetzen auf Werkseinstellungen
4	Mounting assistant	Ausrichthilfe aktivieren/deaktivieren

5.1.1 Kommunikationsparameter

Für eine erfolgreiche Kommunikation muss die Slave-Adresse und die Baudrate eingestellt werden. In den Werkseinstellungen ist der Sensor wie folgt eingestellt:

- Slave Adresse: 1
- Baudrate: 57600 Bd

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [▶ 50].

Modbus Zugriff - Holding Register: Modbus Slave Address

Read/write adress 1100 - length: 1 registers

Adresse	Access	Number of registers	Data type	Description
1100	Read/write	1	uint8	The slave address of the sensor. The sensor will answer with its old address and afterwards act only on messages to the new address. *Unused byte (uint8)*

Modbus Zugriff – Holding Register: Modbus Baudrate

Read/write adress 1101 - length: 1 registers

Adresse	Access	Number of registers	Data type	Description
1101	Read/write	1	uint8	The ID of the sensor's baudrate. Upon writing this value, the sensor will answer with the old baudrate and then set its in- terface to the new baudrate. Afterwards communication is only possible using the new baudrate.
				Possible values are:
				• 0 = 19200
				1 = 38400
				2 = 57600
				3 = 115200
				4 = 128000
				5 = 256000
				• 6 = 2000000
				Unused byte (uint8)

5.2 EtherCat

EtherCAT ist ein Echtzeit-Ethernet-Protokoll und eignet sich für harte sowie weiche Echtzeitanforderungen. *EtherCAT* funktioniert mit MainDevices und SubDevices ähnlich dem Master-Slave-Prinzip.

Anders als bei vielen anderen Industrial-Ethernet-Systemen, durchläuft das vom MainDevice gesendete Telegramm bei *EtherCAT* alle Knoten in einer Kette. Jedes SubDevice extrahiert seine Ausgangsdaten "on the fly" aus dem Telegramm und fügt seine Eingangsdaten in das durchlaufende Telegramm ein. Dies führt zu einer sehr schnellen Aktualisierungsrate für alle Knoten im Netzwerk.

Topologie

Durch die Art der Kommunikation von EtherCAT sind verschiedene Topologien möglich:

- Linie
- Baum
- Stern

Kommunikationsprofile

Zur Konfiguration und Diagnose der Teilnehmer kann mit Hilfe von azyklischer Kommunikation (SDO) auf die für das Netzwerk zur Verfügung gestellten Variablen zugegriffen werden. Grundlage hierfür ist ein zuverlässiges Mailbox-Protokoll mit Auto-Recover-Funktion fehlerhafter Telegramme. Basierend auf diesem Mailbox-Kanal sind folgende Kommunikationsprofile für *Ether-CAT* festgelegt:

- CAN applications protocol over EtherCAT (CoE)
- Servo drive profile, according to IEC 61800-7-204 (SoE)
- Ethernet over EtherCAT
- File Access over EtherCAT (FoE)

Die Controller-Box *OE60C* bietet eine Kommunikation über CoE an und stellt somit die folgenden standardisierten Kommunikationsmechanismen zur Verfügung: Objektverzeichnis, PDO Mapping (Process Data Objects) und SDO (Service Data Objects).

PDOs dienen der raschen Übermittlung von Echtzeitdaten, wohingegen SDOs zur Konfiguration und Einstellung von Geräten eingesetzt werden. PDOs werden zyklisch und automatisch gesendet, während SDOs gezielt durch eine Funktion angefragt werden müssen.

Durch das integrierte Objektverzeichnis ist eine Inbetriebnahme der *OE60C* ohne weitere Beschreibungsdateien möglich. Um die Sensorfunktionen auch ohne bereits vorhandenes Gerät in die Steuerung einbinden zu können oder bei anderer Notwendigkeit, ist die *EtherCAT* Schnittstelle zusätzlich über eine sogenannte ESI-Datei (EtherCat Subdevice information) beschrieben. Die ESI-Datei ist auf der Produktdetailseite der *OE60C* im Abschnitt "Downloads" verfügbar.

INFO

Die ESI-Datei ist auf der Baumer-Webseite auf der Produktseite des Sensors im Abschnitt Downloads verfügbar.

Eine detailierte Übersicht aller EtherCAT-Funktionen finden Sie in Kapitel Anhang [> 50].

6 Betriebsfunktionen

6.1 Filter

Mit der Filterfunktion kann das Rauschen reduziert und die Wiederholpräzision erhöht werden.

Die Anzahl der Messwerte pro Zahlenreihe (Filterlänge) ist wie folgt über die Parametereinstellungen einstellbar:

- Möglichkeit 1: Benötigte Filterlänge aus vordefinierten Filterlängen auswählen.
 - Standard
 - High
 - Very High
- Möglichkeit 2: Benötigte Filterlänge als Zahlenwert eingeben.
 - Custom

Generell

Es werden die Ansprech- und Abfallzeiten erhöht; bewegte Objekte können somit verzögert erkannt werden. Der Präzisionsfilter berechnet die Ergebnisse gleitend. Der älteste Messwert wird entfernt, sobald ein neuer Messwert hinzugefügt wird. Daher ist die Messfrequenz durch den Präzisionsfilter nicht betroffen.

Generell gilt: Je mehr Messwerte pro Filter, desto besser ist die Wiederholpräzision und desto höher ist die Reproduzierbarkeit der Ergebnisse.

Filter Moving Median

Dieser Filter ermöglicht die Unterdrückung einzelner Messfehler, indem er den Median einer festgelegten Anzahl von Messwerten aus einer Zahlenreihe berechnet. Der Median ist derjenige Messwert, der genau "in der Mitte" liegt, wenn man die Messwerte der Größe nach sortiert.

2 Daten nach Filterung mit Moving Median

1

Rohdaten

Filter Moving Average

Dieser Filter glättet den Signalverlauf mit Hilfe einer Durchschnittsberechnung einer festgelegten Anzahl von Messwerten aus einer Zahlenreihe. Eine Messwertänderung wird aufgrund der Durchschnittsberechnung ansteigend sichtbar.

3 Daten nach Filterung mit Moving Average und Moving Median

Je höher die Anzahl der Messwerte pro Filter ist, desto länger ist die Ansprechzeit des Sensors. Das bedeutet, dass eine Messwertänderung erst mit einer Verzögerung in vollem Umfang am Ausgang sichtbar wird.

Möglichkeit 1: Benötigte Filterlänge aus vordefinierten Filterlängen auswählen

	Anzahl Messwerte				
Wert	Moving Median	Moving Average			
Standard	1	1			
High	5	16			
Very High	16	64			

Es stehen folgende Auswahlmöglichkeiten zur Verfügung:

Möglichkeit 2: Filterlänge als Zahlenwert eingeben

Sind die vordefinierten Filterlängen nicht passend, so kann eine individuelle Filterlänge für die Filter *Moving Average* und *Moving Median* eingegeben werden. Sie können die Länge der Filter *Moving Average* und *Moving Median* festlegen, nachdem Sie den Filter *Custom* ausgewählt haben.

- Filter Moving Median: 1 18 Werte
- Filter Moving Average: 1 128 Werte

Display Zugriff: Filter

Voraussetzung:

⇒ Sie befinden sich im Startscreen.

Vorgehen:

- a) Navigieren Sie mit den Tasten \degree und \degree zum Menü *Filter Settings*.
- b) Wählen Sie mit den Tasten volgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste %.
- d) Navigieren Sie mit den Tasten %% zur Funktion **Precision Preset**.

e) Aktivieren Sie den Bearbeitungsmodus mit der Taste 🖑.

- ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- f) Wählen Sie mit den Tasten 🖑 🖓 die gewünschte Einstellung.
- g) Bestätigen Sie die Auswahl mit der Taste $\stackrel{\circ}{\sim}$.

Ergebnis:

- ✓ Die gewählte Einstellung ist geändert.
- Wurde die Einstellung Custom gewählt, können anschliessend die Einstellungen Moving median und Moving Average im Menü Filter Settings angepasst werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [▶ 50].

Modbus Zugriff – Holding Register: Precision Filters

Read/Write adress 4 - length: 1 registers

Adresse	Access	Number of registers	Data type	Description
4	Read/Write	1	uint_8	Select Precision filter preset
				 0 = Standard
				 1 = High
				 2 = Very High
				• 3 = Custom
				Reserved (uint_8): Unused byte

Modbus Zugriff – Holding Register: Custom Precision Filters

Read/Write adress 5 - length: 2 registers

Adresse	Access	Number of registers	Data type	Description
5	Read/Write	2	uint_8	"Custom" precision filter:
				Only possible to parametrize if precision filter preset "Custom" is choosen:
				 Moving median length (uint16): Length of the moving median filter, min. 1 - max. 18 values
				Unused byte (uint_8)
				 Moving average length (uint16): Length of the moving average filter, min. 1 - max. 128 values

EtherCAT-Zugriff: Filter

Name	Index	Subindex	Description
Precision	80X1*	0A	Select Precision filter preset.
			• 0 = Standard
			• 1 = High
			 2 = Very High
			• 3 = Custom
Moving Average Length	80X1*	0B	Length of the moving average filter kernel. Can only be written with "Precision" is set to manual.
Moving Median Length	80X1*	0C	Length of the moving median filter kernel. Can only be written with "Precision" is set to manu- al.

* The X in the index stands for the sensor number. As example: for sensor 1, the index is 8011.

6.2 Laser ein-/ausschalten

Mit dieser Funktion kann der Laser ein- oder ausgeschaltet werden.

So kann es z. B. vor Wartungsarbeiten an einer Maschine/Anlage notwendig sein, den Laser am Sensor auszuschalten.

Display Zugriff: Laser Settings

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [> 14].

Voraussetzung:

 \Rightarrow Sie befinden sich im Startscreen.

Vorgehen:

- a) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menüpunkt Laser Settings.
- b) Wählen Sie die Funktion mit der Taste $\stackrel{\circ}{\sim}$ aus.
- c) Wählen Sie mit den Tasten vor aus, ob der Laser bei allen Sensoren oder nur bei einem bestimmten Sensor ein- oder ausgeschaltet werden soll.
- d) Bestätigen Sie die Auswahl mit der Taste %.
 - ✓ Die aktuelle Einstellung wird angezeigt.
- e) Aktivieren Sie den Bearbeitungsmodus mit der Taste °.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- f) Wählen Sie mit den Tasten vor die gewünschte Einstellung.
- g) Bestätigen Sie die Auswahl mit der Taste °.

Ergebnis:

 Die Laser der gewählten Sensoren sind entsprechend der gewählen Einstellung an bzw. aus.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *An*hang [▶ 50].

Modbus Zugriff – Coils: Laser OFF

Write adress 1 - length: 1 register

Adresse	Access	Number of registers	Data type	Description
1	Write	1	1 Bit	Laser OFF
				 0 = Laser ON (default)
				1 = Laser OFF
				The sensor will turn off the laser and thus stops to measure.
				The sensor only starts to measure again, if 0 gets written to this coil (or if the sen- sor gets restarted).

EtherCAT-Zugriff: Laser ON/OFF

Name	Index	Subindex	Description
Read only:			
Sensor 1 Laser Off	1601	01	Indicates if laser is on or off.
Sensor 2 Laser Off	1602	01	Indicates if laser is on or off.
Sensor 3 Laser Off	1603	01	Indicates if laser is on or off.
Sensor 4 Laser Off	1604	01	Indicates if laser is on or off.
Read/Write:			
Sensor 1 Laser Off	2001	01	Switch off the laser for the individual sensor pairs.
Sensor 2 Laser Off	2001	01	Switch off the laser for the individual sensor pairs.
Sensor 3 Laser Off	2001	01	Switch off the laser for the individual sensor pairs.
Sensor 4 Laser Off	2001	01	Switch off the laser for the individual sensor pairs.

6.3 Messachse konfigurieren

Mit dieser Funktion kann die Richtung der Messachse festgelegt werden.

Abb. 6: Messachse, Standardeinstellung

Wird die Achse invertiert, so dreht sich die Richtung - Inverted (max-to-min). Also - 5 mm links und +5 mm rechts.

Display Zugriff: Axis inversion

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [> 14].

Voraussetzung:

 \Rightarrow Sie befinden sich im Startscreen.

Vorgehen:

a) Navigieren Sie mit den Tasten [‰] und [‰] zum Menü *Measure Settings*.

- b) Wählen Sie mit den Tasten volgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste °.
- d) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menüpunkt Axis inversion.
- e) Wählen Sie die Funktion mit der Taste % aus.
 - ✓ Die aktuelle Einstellung wird angezeigt.
- f) Aktivieren Sie den Bearbeitungsmodus mit der Taste %.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- g) Wählen Sie mit den Tasten %/% die gewünschte Einstellung.
- h) Bestätigen Sie die Auswahl mit der Taste %.

Ergebnis:

✓ Die Einstellung für die Messachse der gewählten Sensoren sind geändert.

Modbus Zugriff (Coils): Axis inversion

Adresse	Access	Number of registers	Data type	Description
2	Write	1	1 Bit	The axis inversion can be set to:
				• 0 = min-to-max
				1 = max-to-min

EtherCAT-Zugriff: Axis Inversion

Name	Index	Subindex	Description
Axis Inversion	8011	03	Axis inversion for sensor 1 - 4.
	8021	03	The axis inversion can be set to:
	8031	03	• 0 = min-to-max
	8041	03	 1 = max-to-min

Sehen Sie dazu auch

Menüführung Controller-Box [> 14]

6.4 Schaltpunkte

Über die Funktion *Schaltpunkte* werden Messwerte (Schaltpunkte) definiert, bei denen der Schaltausgang aktiviert werden soll.

ာဴ INFO

Diese Funktion steht nur in Kombination mit der Controller-Box zur Verfügung.

Die Funktion ist über die folgenden Parameter einstellbar:

- Schaltmodus auswählen (Punktmodus oder Fenstermodus).
- Position der Schaltpunkte (SP1 und SP2) definieren:
 - Punktmodus: SP1
 - Fenstermodus: SP1 und SP2

Punktmodus

Abb. 7: Sensor im Schaltmodus Punktmodus

- Zweck/Anwendung (Beispiel):
 - Ein Messobjekt ausrichten bis es die gewünschte Kantenposition erreicht hat.

Fenstermodus

Zweck/Anwendung (Beispiel):

 Qualtiätskontrolle: Die Breite eines Messobjekts innerhalb eines Toleranzfensters überprüfen.

Display Zugriff: Schaltpunkte

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [14].

Voraussetzung:

- ⇒ Sie befinden sich im Startscreen.
- a) Navigieren Sie mit den Tasten [‰] und [‰] zum Menü *Digital Outputs*.
- b) Wählen Sie mit den Tasten voll voll aus, ob die Einstellung für alle Ausgänge oder einen ausgewählten Ausgang gesetzt werden soll.
- c) Bestätigen Sie die Auswahl mit der Taste 🖑.
- d) Navigieren Sie mit den Tasten 🖑 und 🖑 zur gewünschten Funktion (**Source**, **Switch Point Mode** oder **Switch Point X**).
- e) Wählen Sie die Funktion mit der Taste 🖑 aus.
 - Die aktuelle Einstellung wird angezeigt.
- f) Aktivieren Sie den Bearbeitungsmodus mit der Taste %.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- g) Wählen Sie mit den Tasten 🖑 ⁄% die gewünschte Einstellung.
- h) Bestätigen Sie die Auswahl mit der Taste 🖑.

Ergebnis:

✓ Die Polarität ist auf die neue Einstellung gesetzt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel Anhang [▶ 50].

Name	Index	Subindex	Description
Switching Output 1	F800	0	
Source	F800	01	The signal to be applied to the switching out- put can be set. This applies to all sensor head pairs S1-S4:
			 None
			 Position S1
			 Alarm S1
			 Contamin. S1
Mode	F800	02	Mode for switch points.
Switch Point 1	F800	03	Switch point 1.
Switch Point 2	F800	04	Switch point 2.

EtherCAT-Zugriff: Switch Point

Name	Index	Subindex	Description
Switching Output 2	F801	0	
Source	F800	01 The signal to be applied to the switchin put can be set. This applies to all sense pairs S1-S4:	
			 None
			 Position S1
			 Alarm S1
			 Contamin. S1
Mode	F800	02	Mode for switch points.
Switch Point 1	F800	03	Switch point 1.
Switch Point 2	F800	04	Switch point 2.

6.4.1 Hysterese

Die Funktion verhindert ein unerwünschtes Umschalten des Schaltausgangs. Der parametrierte Wert der Hysterese ist die Abstandsdifferenz zwischen den Punkten, an denen der Schaltausgang aktiviert und deaktiviert wird. Baumer empfiehlt, die Hysterese stets ungleich 0 einzustellen.

Positive Hysterese

- Schaltausgang im Punktmodus: Ein positiver Hysterese-Wert entspricht einer rechtsbündigen Hysterese.
- Schaltausgang im Fenstermodus: Ein positiver Hysterese-Wert entspricht einer ausserhalb des Fensters ausgerichtete Hysterese.

Punktmodus (Verhalten Schaltausgang)

Abb. 10: Verhalten des Schaltausgangs bei Punktmodus (positive Hysterese)

Fenstermodus (Verhalten Schaltausgang)

Abb. 11: Verhalten des Schaltausgangs bei Fenstermodus (positive Hysterese)

Display Zugriff: Hysteresis

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [> 14].

Voraussetzung:

⇒ Sie befinden sich im Startscreen.

Vorgehen:

- a) Navigieren Sie mit den Tasten \degree und \degree zum Menü *Digital Outputs*.
- b) Wählen Sie mit den Tasten volgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste 00.
- d) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menüpunkt *Hysteresis*.
- e) Wählen Sie die Funktion mit der Taste \degree aus.
 - ✓ Die aktuelle Einstellung wird angezeigt.
- f) Aktivieren Sie den Bearbeitungsmodus mit der Taste 🏸.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- g) Wählen Sie mit den Tasten 🖑 / 😳 die gewünschte Einstellung.
- h) Bestätigen Sie die Auswahl mit der Taste %.

Ergebnis:

✓ Die Hysterese ist auf die neue Einstellung gesetzt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *An*hang [▶ 50].

Name	Index	Subindex	Description		
Hysteresis	F800	05	Hysteresis for switching output 1.		
Hysteresis	F801	05	Hysteresis for switching output 2.		

EtherCAT-Zugriff: Hysteresis

6.4.2 Polarität

Mit dieser Funktion wird das Verhalten der Schaltausgänge in Bezug auf den Ausgangspegel definiert.

Über die Parametrierung haben Sie die Auswahl zwischen Active High und Active Low.

Active High

- Punktmodus: Der Schaltausgang wird aktiviert, sobald der definierte Messwert SP1 unterschritten wird.
- Fenstermodus: Der Schaltausgang wird aktiviert, sobald der Messwert innerhalb des Fensters von SP1 und SP2 liegt.

Active Low

Abb. 13: Polarität – Active Low

- Punktmodus: Der Schaltausgang wird aktiviert, sobald der definierte Messwert SP1 überschritten wird.
- Fenstermodus: Der Schaltausgang wird aktiviert, sobald der Messwert ausserhalb des Fensters von SP1 und SP2 liegt.

Display Zugriff: Polarity

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [14].

Voraussetzung:

⇒ Sie befinden sich im Startscreen.

Vorgehen:

- a) Navigieren Sie mit den Tasten [‰] und [‰] zum Menü *Digital Outputs*.
- b) Wählen Sie mit den Tasten volgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste %.
- d) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menüpunkt *Polarity*.
- e) Wählen Sie die Funktion mit der Taste $\stackrel{\circ}{\circ}$ aus.
 - ✓ Die aktuelle Einstellung wird angezeigt.
- f) Aktivieren Sie den Bearbeitungsmodus mit der Taste °.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- g) Wählen Sie mit den Tasten %% die gewünschte Einstellung.
- h) Bestätigen Sie die Auswahl mit der Taste 0%.

Ergebnis:

✓ Die Polarität ist auf die neue Einstellung gesetzt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *An*hang [▶ 50].

EtherCAT-Zugriff: Polarity

Name	Index	Subindex	Description
Polarity	F800	06	Polarity for switching output 1.
Polarity	F801	06	Polarity for switching output 2.

6.5 Nullpunkt

Der gemessene Wert ist relativ zur eingestellten Nullpunkt-Position. Standardmässig deckt sich die Nullpunkt-Position des Sensors mit der Mitte des Messbereichs und kann auf einen beliebigen Wert innerhalb des Messbereichs des Sensors eingestellt werden.

Der Messwert und die Schaltpunktpositionen werden relativ zur Nullpunkt-Position berechnet.

Abb. 14: Nullpunkt-Position, Standardeinstellung

Es gibt zwei Möglichkeiten den Nullpunkt einzustellen:

- Nummerisch über Eingabe eines Zahlenwertes
- Teachen der Nullpunktposition

Vorgehen zum Teach der Nullpunktposition:

Vorgehen:

a) Platzieren Sie ein Objekt an die Position Ihres gewünschten Nullpunkts.

b) Teachen Sie den Nullpunkt.

Beispiel 1:

- Physikalische Kantenposition im Messbereich: -5 mm
- Eingestellte Nullpunkt-Position: 0 mm (Voreinstellung)
- Ausgegebener Messwert: -5 mm

Beispiel 2:

- Physikalische Kantenposition im Messbereich: -5 mm
- Eingestellte Nullpunkt-Position: -3 mm
- Ausgegebener Messwert: -2 mm

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [14].

Display Zugriff: Nullpunkt teachen

Mit dieser Funktion kann der Nullpunkt auf Basis eines Objekt "eingelernt" werden.

Voraussetzung:

- ⇒ Sie befinden sich im Startscreen.
- ⇒ Ein Objekt befindet sich an der zu teachenden Position im Messbereich.
- a) Navigieren Sie mit den Tasten [‰] und [‰] zum Menü *Measure Settings*.
- b) Wählen Sie mit den Tasten volgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste °.
- d) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menüpunkt **Zero Pos. Teach com.**
- e) Wählen Sie die Funktion mit der Taste 🖑 aus.
 - Die Distanz zum Objekt im Messbereich wird gemessen und als neuer Nullpunkt gespeichert.

Ergebnis:

✓ Der Nullpunkt ist eingelernt.

Display Zugriff: Nullpunkt setzen

Mit dieser Funktion kann der Wert für den Nullpunkt numerisch eingegeben werden.

Voraussetzung:

- ⇒ Sie befinden sich im Startscreen.
- a) Navigieren Sie mit den Tasten % und 🖑 zum Menü *Measure Settings*.
- b) Wählen Sie mit den Tasten volgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste °.
- d) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menüpunkt Zero Position.
- e) Wählen Sie die Funktion mit der Taste [%] aus.
 - ✓ Die aktuelle Einstellung wird angezeigt.
- f) Aktivieren Sie den Bearbeitungsmodus mit der Taste %.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- g) Wählen Sie mit den Tasten 🖑 🖓 den gewünschten numerischen Wert.
- h) Bestätigen Sie die Auswahl mit der Taste %.

Ergebnis:

✓ Der Nullpunkt ist auf den neuen Wert gesetzt.

Modbus Zugriff – Coils: Teach zero position

Write adress 0 - length: 1 registers

Adresse	Access	Number of registers	Data type	Description
0	Write	1	1 Bit	Teach zero position
				The sensor will take the current po- sition as new zero position, if ANY value gets written.

Modbus Zugriff – Holding register: Zero position

Read/Write adress 2 - length: 2 registers

		Number of		
Adresse	Access	registers	Data type	Description
2	Read/Write	2	int_32	Zero Position
				The zero position of the sensor in
				[mm].

EtherCAT-Zugriff: Nullpunkt

Name	Index	Subindex	Description
Teach zero position	80X1*	01	Teach the zero position.
Zero position	80X1*	06	Set value for zero position.

* The X in the index stands for the sensor number. As example: for sensor 1, the index is 8011.

6.6 Werkseinstellungen

Setzen Sie mit dieser Funktion die Parameter/Sensorwerte auf die Werkseinstellungen zurück. Alle Benutzereinstellungen werden zurückgesetzt.

Die Werkseinstellungen werden für Sensor und Controller-Box getrennt zurückgesetzt.

Übersicht Werkseinstellungen OE60 (Sensor)

Einstellbare Parameter	Werkseinstellung im Sensor	
Axis inversion	false	
Zero position		0
Precision	Preset	Verry high
	Moving median length (for pre- set custom)	16
	64	
Invalid value handling	Activated	false
	Value after dropout	last valid
	500µs	
Modbus	Address	1
	Baudrate	115200

Übersicht Werkseinstellungen OE60C (Controller-Box)

Einstellbare Parameter	Werkseinstellung im Sensor	
DigitalOut1	Source	None
	Mode	Point
	Polarity	Active high
	SP1	0
	SP2	-5
	Hysteresis	0.1
DigitalOut2	Source	None
	Mode	Point
	Polarity	Active high
	SP1	0
	SP2	-5
	Hysteresis	0.1

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [> 14].

Display Zugriff: Factory reset command (Sensor-Einstellungen zurücksetzen)

Voraussetzung:

 \Rightarrow Sie befinden sich im Startscreen.

Vorgehen:

- a) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menü *Measure Settings*.
- b) Wählen Sie mit den Tasten vor aus, ob alle Sensoren oder nur ein bestimmter Sensor auf Werkseinstellungen zurück gesetzt werden sollen.
- c) Bestätigen Sie die Auswahl mit der Taste \degree .
- d) Wählen Sie mit den Tasten of die Funktion *Factory Reset comm.* aus.
- e) Aktivieren Sie den Bearbeitungsmodus mit der Taste %.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- f) Setzen Sie mit der Taste \degree die gewählten Sensoren auf Werkseinstellungen zurück.

Ergebnis:

✓ Die gewählten Sensoren sind auf Werkseinstellungen zurückgesetzt.

Display Zugriff: Factory reset command (Sensor-Einstellungen zurücksetzen)

Voraussetzung:

- ⇒ Sie befinden sich im Startscreen.
- a) Navigieren Sie mit den Tasten 🖑 und 🗳 zum Menü *Reset*.
- b) Bestätigen Sie die Auswahl mit der Taste °.
- c) Wählen Sie mit der Taste ⁽) die Funktion *Factory Reset command* aus.
- d) Aktivieren Sie den Bearbeitungsmodus mit der Taste %.
 - *Reset* wird angezeigt.
- e) Setzen Sie mit der Taste ⁰ die Controller-Box auf Werkseinstellungen zurück.

Ergebnis:

✓ Die Controller-Box ist auf Werkseinstellungen zurückgesetzt.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel Anhang [▶ 50].

Modbus Zugriff – Coils: Factory reset

Read adress 3 - length: 1 register

Adresse	Access	Number of registers	Data type	Description
3	Write	1	1 Bit	Factory reset
				The sensor will perform a factory re- set, if 1 gets written to this coil.

EtherCAT-Zugriff: Factory reset

Name	Index	Subindex	Description
Factory reset	80X1	04	The X in the index stands for the sensor num- ber. As example: for sensor 1, the index is 8011.
Restore all default parame- ters	1011	01	Reset controller box (incl. switching outputs that are only available on the box).

6.7 Verhalten bei fehlerhaften Messwerten

Mit dieser Funktion kann das Verhalten des Sensors festgelegt werden, wenn der Sensor einen ungültigen Messwert aufnimmt. Mit der Funktion können z. B. in einer dynamischen Anwendung wiederkehrende Reflexionen von Maschinenbauteilen oder Reflexionen vom Messobjekt ausgeblendet werden. Ungültige Messwerte treten auf, wenn

- sich kein Objekt im Messbereich (MR) befindet oder
- das Signal auf Grund von Reflexionen oder nicht erkennbaren Objekten zu schwach ist.

Mögliche Optionen:

Mit dieser Funktion kann das Verhalten des Sensors festgelegt werden, wenn er einen ungültigen Messwert aufnimmt. Folgende Einstellungen sind möglich:

Die Funktion *Invalid Value Handling* ist standardmässig nicht aktiv und muss zuerst aktiviert werden, wenn sie genutzt werden soll. Anschliessend kann die Funktion über die Parameter *Hold time* und *Dropout value* konfiguriert werden.

Die Zeitspanne (*Hold time*) legt fest, wie lange ein ungültiger Messwert unterdrückt werden soll. Die Zeitspanne wird genutzt, um ungültige Messwerte an den Ausgängen auszublenden. Der Ausgang wird erst nach Ablauf der Zeitspanne gesetzt.

Mögliche Optionen für Dropout value:

- min Sensor hält den min. Messwert.
- max Sensor hält den max. Messwert.
- last valid Sensor hält den letzten gültigen Messwert.

Display Zugriff: Invalid values

Detaillierte Informationen zur Menüstruktur und zur Bedienung des Displays finden Sie in Kapitel *Menüführung Controller-Box* [14].

Voraussetzung:

 \Rightarrow Sie befinden sich im Startscreen.

Vorgehen:

- a) Navigieren Sie mit den Tasten 🖑 und 🖑 zum Menü *Filter Settings*.
- b) Wählen Sie mit den Tasten volle volle einstellung für einen bestimmten Sensor oder für alle Sensoren vorgenommen wird.
- c) Bestätigen Sie die Auswahl mit der Taste %.
- d) Navigieren Sie mit den Tasten % 2 zur Funktion *Invalid values*.
- e) Wählen Sie die Funktion mit der Taste % aus.
 - ✓ Die aktuelle Einstellung wird angezeigt.
- f) Navigieren Sie mit den Tasten 🖑 / 🙄 zur Funktion *Hold time* bzw. *Dropout value*.
- g) Aktivieren Sie den Bearbeitungsmodus mit der Taste %.
 - ✓ Vor der aktuellen Einstellung wird das Symbol > angezeigt.
- h) Wählen Sie mit den Tasten 🖑 / 🙄 die gewünschte Einstellung.
- i) Bestätigen Sie die Auswahl mit der Taste °.

Ergebnis:

Die gewählte Einstellung ist geändert.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel Anhang [▶ 50].

Modbus Zugriff – Holding Register: Invalid value handling

Read/Write adress 12 - length: 4 registers

Access	Number of registers	Data type	Description
Read/Write	4	1 Bit	Product information:
			 Activate Invalid Value Handling (bool): Defines whether the invalid value handling is being used or not. *Unused byte (uint8)* Hold Time (uint32): Defines how long invalid values are being suppressed after the last valid value in us.
			 Dropout value (uint8): Invalid values are replaced with this value: 0: min 1: max 2: last valid

EtherCAT-Zugriff: Invalid Value Handling

Name	Index	Subindex	Description
Invalid Value Handling	80X1*	07	Whether the invalid value handling is being used or not.
Invalid Value Handling - Hold Time	80X1*	08	Set hold time. Specifies how long invalid va- lues are suppressed after the last valid value.
Invalid Value Handling - Dropout Value	80X1*	09	Dropout value (uint8): Invalid values are replaced with this value: • 0: min • 1: max • 2: last valid

* The X in the index stands for the sensor number. As example: for sensor 1, the index is 8011.

7 Diagnosefunktionen

7.1 Identifikation

Mit diesen Funktionen können verschiedene Informationen zur Identifikation des Sensors ausgelesen bzw. geschrieben werden.

Detaillierte Informationen zu den im Folgenden aufgeführten Angaben finden Sie in Kapitel *Anhang* [▶ 50].

Modbus Zugriff – Input Register: Identification

Read adress 0 - length: 33 registers

Adresse	Access	Number of registers	Data type	Description
0	Read	33	string_65	Vendor Name

Modbus Zugriff – Input Register: Product Information

Read adress 40 - length: 65 registers

Adresse	Access	Number of registers	Description
40	Read	65	Product information:
			 Product ID (string[9])
			 Sensor Type (string[65])
			 Serial Number (string[20])
			Unused byte (uint8)
			 Firmware Version (string[30])
			 Unused byte (uint8)

EtherCAT-Zugriff:

Name	Index	Subindex	Description
Device Type	1000	0	Vendor-specific product or type identification, e. g. item number or model number.
Device Name	1008	0	Complete product name.
Hardware Version	1009	0	Unique, vendor-specific identifier of the hard- ware revision of the individual device, e. g. 00.00.01
Software Version	100A	0	Unique, vendor-specific identifier of the firm- ware revision of the individual device, e .g. 00.00.04
Restore default parameters	1011	0	Reset controller box.
Restore all default parame- ters	1011	01	Reset controller box (incl. switching outputs that are only available on the box)
Identify Object	1018	0	
Vendor ID	1018	01	Unique, vendor-specific identifier of the indivi- dual device.

Name	Index	Subindex	Description
Product Code	1018	02	Unique, vendor-specific product code.
Revision Number	1018	03	
Serial Number	1018	04	
Timestamp Object	10F8	0	

8 Anhang

8.1 Modbus

8.1.1 Discrete Inputs

Coils

Address	Name	Description
0	value_alarm	Signals the current measurement alarm state.
		Reads 1 if the current measurement value is not value.

8.1.2

Address	Name	Description
0	teach_zero_pos	Command "Teach zero position"
		The sensor will take the current position as new zero po- sition, if any value gets written here.
1	laser_off	Command "Laser off data hold"
		The sensor will stop to measure (and thus the laser will be off) if 1 gets written to this coil.
		The sensor only starts to measure again, if 0 gets written to this coil (or if the sensor gets restarted).
2	axis_inversion	The axis inversion can be set to:
		• 0 = min-to-max
		1 = max-to-min
3	factory_reset	The sensor will perform a factory reset, if 1 gets written to the coil.
4	mounting_assi- stant_enabled	The mounting assistant will be disabled (when on, a yel- low LED indicates incorrect allignment), if 0 gets written to this coil.

8.1.3 Input registers

Address	Length	Name	Description
0	33*	vendor_info	vendor_name
			 (string[65]): Name of the vendor
40	60*	device_info	product_id
			 (string[9]): Product ID
			sensor_type
			 (string[65]): Name of the sensor
			serial_number
			 (string[20]): Serial number
			padding2
			 (uint8): Unused byte
			firmware_version
			 (string[20]): Firmware version
			padding4
			 (uint8): Unused byte
105	9*	all_measure-	status
		ment_values	 (uint16): Status of the measurement value
			measurement_value
			 (int32): Measurement value scaled by positi- on_scaling_32bit [mm divided by scaling]
			 contamination_indicator
			 (int32): Value of the contamination indicator (0 to 100)
			 timestamp
			 (int64): Timestamp of taking the laser frame
114	2*	measure-	measurement_value
		ment_values	 (int32): Measurement value scaled by positi-
			on_scaling_32bit [mm divided by scaling]
116	5*	scaling_factors	position_scaling_32bit
			 (uint32): position_scaling_32bit
			 padding
			 (uint8): Unused byte
121	1	mounting_assi-	state
		stant	 (uint8): state of the mounting assistant
			padding0
			 (uint8): Unused byte

* Diese Daten sind länger als 16 Bit (entspricht einem Register) und können nur in einem Funktionsaufruf ausgelesen werden. Die entsprechenden Register müssen mit einem Funktionsaufruf über *Function Code 03* oder *Function Code 04* aufgerufen werden. Ein Zugriff auf die einzelnen Register ist nicht möglich.

8.1.4 Holding register

Address	Length	Name	Description		
2	2*	zero_position	zero_position		
			 (int32): The zero position of the sensor scaled by position_scaling_32bit [mm divided by scaling]. 		
4	1*	precision	preset		
			 (uint8): The preset for the precision. May be one of the following: 0 = standard 1 = high 2 = very high 3 = manual 		
			padding0		
			 (uint8): Unused byte 		
5	2*	temporal_filters	moving_median_length		
			 (uint16): Length of the moving median filter ker- nel. Can only be written with "preset" is set to 3 (manual). 		
			moving_average_length		
			 (uint16): Length of the moving average filter ker- nel. Can only be written with "preset" is set to 3 (manual). 		
12	4*	invalid_va-	use_invalid_value_handling		
		lue_handling	 (bool): Whether the invalid value handling is being used or not. 		
			padding0		
			 (uint8): Unused byte 		
			hold_time		
			 (uint32): How long invalid values are being sup- pressed after the last valid value. 		
			value_after_dropout		
			 (uint8): With which value invalid ones are to be replaced: 0 = min 		
			• 1 = max		
			• 2 = last valid		
			padding3		
1400			 (unt8): Unused byte 		
1100	1	modbus_sla-	 modbus_slave_address (uipt8): The modbus slave address of the concert 		
			 (units). The modulus slave address of the sensor. The sensor will answer with its old address and afterwards act only on messages to the new ad- dress. 		
			padding0		
			 (uint8): Unused byte 		

Address	Length	Name	Description
1101	1	modbus_bau- drade	 modbus_baudrate_id (uint8): The ID of the sensors baud rate. Upon writing this value, the sensor will answer with the old baud rate and then set its interface to teh new baud rate. Possible values: 0 = 19200 1 = 38400 2 = 57600 3 = 115200 4 = 128000 5 = 256000 6 = 2000000 padding0 (uint8): Unused byte

* Diese Daten sind länger als 16 Bit (entspricht einem Register) und können nur in einem Funktionsaufruf ausgelesen werden. Die entsprechenden Register müssen mit einem Funktionsaufruf über *Function Code 03* oder *Function Code 04* aufgerufen werden. Ein Zugriff auf die einzelnen Register ist nicht möglich. Der Sensor verweigert den Zugriff.

8.2 EtherCat

8.2.1 Standardobjekte

Index	Subindex	Name	Data type	Access rights	Value range	Description
1000	0	Device Type	UDINT	R		Vendor-specific product or type identification, e. g. item number or model number.
1008	0	Device Name	STRING(5)	R	ASCII	Complete product name.
1009	0	Hardware Version	STRING(27)	G(27) R ASCII		Unique, vendor-specific identifier of the hardware revision of the individual device, e. g. 00.00.01
100A	0	Software Version	STRING(27)	R	ASCII	Unique, vendor-specific identifier of the firmware revision of the in- dividual device, e .g. 00.00.04
1011		Restore default para- meters				Reset controller box.
	0	Number of entries	USINT	R		
	01	Restore all default pa- rameters	UDINT	R/W		Reset controller box (incl. switching outputs that are only available on the box)
1018		Identify Object				Unique, vendor-specific identifier of the individual device.
	0	Number of entries	USINT	R		
	01	Vendor ID	UDINT	R		
	02	Product Code	UDINT	R		Unique, vendor-specific product code.
	03	Revision Number	UDINT	R		
	04	Serial Number	UDINT	R		
10F8	0	Timestamp Object	ULINT	R		

8 | Anhang

54

8.2.2 Zyklische Ausgangsdaten RxPDO

Index	Subindex	Name	Data type	Access rights	Value range	Description
17ff	1	Device Control	UDINT	R		Control Value: Alarm if the box would be defective.
						• 0 = OK
						1 = Error, box must be checked
1601		Sensor 1 Values				
	0	Number of entries	USINT	R	0/1	Switch off the laser for the individual sensor pairs.
	01	Sensor 1 Laser Off	UDINT	R	042949672 95	
1602		Sensor 2 Values				
	0	Number of entries	USINT	R	0/1	Switch off the laser for the individual sensor pairs.
	01	Sensor 2 Laser Off	UDINT	R	042949672 95	
1603		Sensor 3 Values				
	0	Number of entries	USINT	R	0/1	Switch off the laser for the individual sensor pairs.
	01	Sensor 3 Laser Off	UDINT	R	042949672 95	
1604		Sensor 4 Values				
	0	Number of entries	USINT	R	0/1	Switch off the laser for the individual sensor pairs.
	01	Sensor 4 Laser Off	UDINT	R	042949672 95	

8.2.3 Zyklische Eingangsdaten TxPDO

Index	Subindex	Name	Data type	Access rights	Value range	Description
1A00		Device TxPDO				
	0	Number of entries	USINT	R		
	01	Control Value	UDINT	R	042949672 95	
1A01		Sensor 1 TxPDO				
	0	Number of entries	USINT	R		
	01	Sensor 1 Status	UDINT	R	042949672 95	Status for sensor 1
	02	Sensor 1 Measure- ment Value	DINT	R	-2147483648 2147483647	Measurement value for sensor 1
	03	Sensor 1 Contaminati- on Indicator	UDINT	R	042949672 95	Contamination index for sensor 1
	04	Sensor 1 TimestaSen- sor 3 Status mp	ULINT	R		Timestamp for sensor 1
1A02		Sensor 2 TxPDO				
	0	Number of entries	USINT	R		
	01	Sensor 2 Status	UDINT	R	042949672 95	Status for sensor 2
	02	Sensor 2 Measure- ment Value	DINT	R	-2147483648 2147483647	Measurement value for sensor 2
	03	Sensor 2 Contaminati- on Indicator	UDINT	R	042949672 95	Contamination index for sensor 2
	04	Sensor 2 Timestamp	ULINT	R		Timestamp for sensor 2

Index	Subindex	Name	Data type	Access rights	Value range	Description
1A03		Sensor 3 TxPDO				
	0	Number of entries	USINT	R		
	01	Sensor 3 Status	UDINT	R	042949672 95	Status for sensor 3
	02	Sensor 3 Measure- ment Value	DINT	R	-2147483648 2147483647	Measurement value for sensor 3
	03	Sensor 3 Contaminati- on Indicator	UDINT	R	042949672 95	Contamination index for sensor 3
	04	Sensor 3 Timestamp	ULINT	R		Timestamp for sensor 3
1A04		Sensor 4 TxPDO				
	0	Number of entries	USINT	R		
	01	Sensor 4 Status	UDINT	R	042949672 95	Status for sensor 4
	02	Sensor 4 Measure- ment Value	DINT	R	-2147483648 2147483647	Measurement value for sensor 4
	03	Sensor 4 Contaminati- on Indicator	UDINT	R	042949672 95	Contamination index for sensor 4
	04	Sensor 4Timestamp	ULINT	R		Timestamp for sensor 4

8.2.4 Azyklische Ausgangsdaten

Index	Subindex	Name	Data type	Access rights	Value range	Description
2000		Device OUTPUT				
	0	Number of entries	USINT	R		
	01	Control Value	UDINT	R/W	042949672 95	
2001		Sensor 1 OUTPUT				
	0	Number of entries	USINT	R		
	01	Sensor 1 Laser Off	UDINT	R/W	042949672 95	
2002		Sensor 2 OUTPUT				
	0	Number of entries	USINT	R		
	01	Sensor 2 Laser Off	UDINT	R/W	042949672 95	
2003		Sensor 3 OUTPUT				
	0	Number of entries	USINT	R		
	01	Sensor 3 Laser Off	UDINT	R/W	042949672 95	
2004		Sensor 4 OUTPUT				
	0	Number of entries	USINT	R		
	01	Sensor 4 Laser Off	UDINT	R/W	042949672 95	

58

8.2.5 Azyklische Eingangsdaten

Index	Subindex	Name	Data type	Access rights	Value range	Description
3000		Device INPUT				
	0	Number of entries	USINT	R		
	01	Control Value	UDINT	R	042949672 95	
3001		Sensor 1 INPUT				
	0	Number of entries	USINT	R		
	01	Sensor 1 Status	UDINT	R/W	042949672 95	 Status for sensor 1: 0 = OK 1 = NOK, no valid measured value can be recorded, e.g. no measurement object in the measurement range
	02	Sensor 1 Measure- ment Value	DINT	R/W	-2147483648 2147483647	Measurement value for sensor 1
	03	Sensor 1 Contaminati- on Indicator	UDINT	R/W	042949672 95	Contamination index for sensor 1
	04	Sensor 1 Timestamp	ULINT	R/W		Timestamp for sensor 1
3002		Sensor 2 INPUT				
	0	Number of entries	USINT	R		
	01	Sensor 2 Status	UDINT	R/W	042949672 95	 Status for sensor 2: 0 = OK 1 = NOK, no valid measured value can be recorded, e.g. no measurement object in the measurement range
	02	Sensor 2 Measure- ment Value	DINT	R/W	-2147483648 2147483647	Measurement value for sensor 2
	03	Sensor 2 Contaminati- on Indicator	UDINT	R/W	042949672 95	Contamination index for sensor 2
	04	Sensor 2 Timestamp	ULINT	R/W		Timestamp for sensor 2

Funktions- und Schnittstellenbeschreibung

Index	Subindex	Name	Data type	Access rights	Value range	Description
3003		Sensor 3 INPUT				
	0	Number of entries	USINT	R		
	01	Sensor 3 Status	UDINT	R/W	042949672	Status for sensor 3:
					95	• 0 = OK
						1 = NOK, no valid measured value can be recorded, e.g. no
						measurement object in the measurement range
	02	Sensor 3 Measure-	DINT	R/W	-2147483648	Measurement value for sensor 3
		ment Value				
	00			DAA	2147403047	
	03	on Indicator	UDINT	R/W	042949672 95	Contamination index for sensor 3
	04	Sensor 3 Timestamp	ULINT	R/W		Timestamp for sensor 3
3004		Sensor 4 INPUT				
	0	Number of entries	USINT	R		
	01	Sensor 4 Status	UDINT	R/W	042949672	Status for sensor 4:
					95	• 0 = OK
						1 = NOK, no valid measured value can be recorded, e.g. no
						measurement object in the measurement range
	02	Sensor 4 Measure-	DINT	R/W	-2147483648	Measurement value for sensor 4
		ment Value				
			· · · · ·	-	2147483647	
	03	Sensor 4 Contaminati- on Indicator	UDINT	R/W	042949672 95	Contamination index for sensor 4
	04	Sensor 4Timestamp	ULINT	R/W		Timestamp for sensor 4

8 | Anhang

8.2.6 Azyklische Parametrieroptionen

Index	Subindex	Name	Data type	Access rights	Value range	Description
9000		Device Info				
	0	Number of entries	USINT	R		
	01	Product ID	STRING(9)	R		
	02	Product Type	STRING(65)	R		
	03	Serial Number	STRING(20)	R		
	04	Firmware Version	STRING(30)	R		
8010		Sensor 1 Device Info				
	0	Number of entries	USINT	R		
	01	Product ID	STRING(9)	R		
	02	Product Type	STRING(65)	R		
	03	Serial Number	STRING(20)	R		
	04	Firmware Version	STRING(30)	R		

Index	Subindex	Name	Data type	Access rights	Value range	Description
8011		Sensor 1 Configuration				
	0	Number of entries	USINT	R		
	01	Teach Zero Position	BOOL	R/W		
	02	Laser Off	BOOL	R/W		
	03	Axis Inversion	BOOL	R/W		
	04	Factory Reset	BOOL	R/W		
	05	Reserve	UINT	R/W		
	06	Zero Position	DINT	R/W		
	07	Invalid Value Handling	BOOL	R/W		Whether the invalid value handling is being used or not.
	08	Invalid Value Handling - Hold Time	UDINT	R/W		Set hold time. Specifies how long invalid values are suppressed after the last valid value.
	09	Invalid Value Handling - Dropout value	EN32	R/W		
	0A	Precision	EN32	R/W		
	0B	Moving Average Length	UINT	R/W		
	0C	Moving Median Length	UINT	R/W		
	0D	Position Scaling Factor	UDINT	R		
	0E	Reserve	UDINT	R		
	0F	Timestamp Resolution USec	UDINT	R		
	10	Mounting Assistant	BOOL	R/W		

Index	Subindex	Name	Data type	Access rights	Value range	Description
8020		Sensor 2 Device Info				
	0	Number of entries	USINT	R		
	01	Product ID	STRING(9)	R		
	02	Product Type	STRING(65)	R		
	03	Serial Number	STRING(20)	R		
	04	Firmware Version	STRING(30)	R		
8021		Sensor 2 Configuration				
	0	Number of entries	USINT	R		
	01	Teach Zero Position	BOOL	R/W		
	02	Laser Off	BOOL	R/W		
	03	Axis Inversion	BOOL	R/W		
	04	Factory Reset	BOOL	R/W		
	05	Reserve	UINT	R/W		
	06	Zero Position	DINT	R/W		
	07	Invalid Value Handling	BOOL	R/W		Whether the invalid value handling is being used or not.
	08	Invalid Value Handling - Hold Time	UDINT	R/W		Set hold time. Specifies how long invalid values are suppressed after the last valid value.
	09	Invalid Value Handling - Dropout value	EN32	R/W		
	0A	Precision	EN32	R/W		
	0B	Moving Average Length	UINT	R/W		
	0C	Moving Median Length	UINT	R/W		
	0D	Position Scaling Factor	UDINT	R		
	0E	Reserve	UDINT	R		

Index	Subindex	Name	Data type	Access rights	Value range	Description
	0F	Timestamp Resolution USec	UDINT	R		
	10	Mounting Assistant	BOOL	R/W		
8030		Sensor 3 Device Info				
	0	Number of entries	USINT	R		
	01	Product ID	STRING(9)	R		
	02	Product Type	STRING(65)	R		
	03	Serial Number	STRING(20)	R		
	04	Firmware Version	STRING(30)	R		
8031		Sensor 3 Configuration				
	0	Number of entries	USINT	R		
	01	Teach Zero Position	BOOL	R/W		
	02	Laser Off	BOOL	R/W		
	03	Axis Inversion	BOOL	R/W		
	04	Factory Reset	BOOL	R/W		
	05	Reserve	UINT	R/W		
	06	Zero Position	DINT	R/W		
	07	Invalid Value Handling	BOOL	R/W		Whether the invalid value handling is being used or not.
	08	Invalid Value Handling - Hold Time	UDINT	R/W		Set hold time. Specifies how long invalid values are suppressed after the last valid value.
	09	Invalid Value Handling - Dropout value	EN32	R/W		
	0A	Precision	EN32	R/W		
	0B	Moving Average Length	UINT	R/W		
	0C	Moving Median Length	UINT	R/W		

8 | Anhang

Index	Subindex	Name	Data type	Access rights	Value range	Description
-	0D	Position Scaling Factor	UDINT	R		
	0E	Reserve	UDINT	R		
	0F	Timestamp Resolution USec	UDINT	R		
	10	Mounting Assistant	BOOL	R/W		
8040		Sensor 4 Device Info				
	0	Number of entries	USINT	R		
	01	Product ID	STRING(9)	R		
	02	Product Type	STRING(65)	R		
	03	Serial Number	STRING(20)	R		
	04	Firmware Version	STRING(30)	R		
8041		Sensor 4 Configuration				
	0	Number of entries	USINT	R		
	01	Teach Zero Position	BOOL	R/W		
	02	Laser Off	BOOL	R/W		
	03	Axis Inversion	BOOL	R/W		
	04	Factory Reset	BOOL	R/W		
	05	Reserve	UINT	R/W		
	06	Zero Position	DINT	R/W		
	07	Invalid Value Handling	BOOL	R/W		Whether the invalid value handling is being used or not.
	08	Invalid Value Handling - Hold Time	UDINT	R/W		Set hold time. Specifies how long invalid values are suppressed after the last valid value.
	09	Invalid Value Handling - Dropout value	EN32	R/W		
	0A	Precision	EN32	R/W		

Anhang | 8

In	dex	Subindex	Name	Data type	Access rights	Value range	Description
		0B	Moving Average Length	UINT	R/W		
		0C	Moving Median Length	UINT	R/W		
		0D	Position Scaling Factor	UDINT	R		
		0E	Reserve	UDINT	R		
		OF	Timestamp Resolution USec	UDINT	R		
		10	Mounting Assistant	BOOL	R/W		

8.2.7 Spezifische Parameter für Controller-Box

Index	Subindex	Name	Data type	Access rights	Value range	Description
F000		Modular Device Profile				Describes the module structure.
	0	Number of entries	USINT	R		
	01	Index distance	UINT	R		
	02	Maximum number of modules	UINT	R		
F800		Switching Output 1				Parameterization of the switching output 1.
	0	Number of entries	USINT	R		
	01	Source	EN32	R/W		The signal to be applied to the switching output can be set. This applies to all sensor head pairs S1-S4:
						 None
						 Position S1
						 Alarm S1
						Contamin. S1
	02	Mode	EN32	R/W		Mode for switch points.
	03	Switch Point 1	DINT	R/W		Switch point 1.
	04	Switch Point 2	DINT	R/W		Switch point 2.
	05	Hysteresis	DINT	R/W		Hysteresis for switching output 1.

Index	Subindex	Name	Data type	Access rights	Value range	Description
	06	Polarity	EN32	R/W		Polarity for switching output 1.
F801		Switching Output 2				Parameterization of the switching output 2.
	0	Number of entries	USINT	R		
	01	Source	EN32	R/W		The signal to be applied to the switching output can be set. This applies to all sensor head pairs S1-S4:
						None
						 Position S1
						 Alarm S1
						Contamin. S1
	02	Mode	EN32	R/W		Mode for switch points.
	03	Switch Point 1	DINT	R/W		Switch point 1.
	04	Switch Point 2	DINT	R/W		Switch point 2.
	05	Hysteresis	DINT	R/W		Hysteresis for switching output 2.
	06	Polarity	EN32	R/W		Polarity for switching output 2.
F802	0	Touch lock	BOOL	R/W		The control panel (buttons) can be locked to prevent the parame- terization of the sensors via the control panel.
						TRUE = Panel locked
						FALSE = Panel unlocked

Baumer Electric AG Hummelstrasse 17 CH – 8501 Frauenfeld www.baumer.com

